Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s, cons(Y)) → cons(Y)
from(X) → cons(X)
add(0, X) → X
add(s, Y) → s
len(nil) → 0
len(cons(X)) → s

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s, cons(Y)) → cons(Y)
from(X) → cons(X)
add(0, X) → X
add(s, Y) → s
len(nil) → 0
len(cons(X)) → s

Q is empty.

We use [23] with the following order to prove termination.

Lexicographic path order with status [19].
Quasi-Precedence:
fst2 > cons1 > nil
from1 > cons1 > nil
len1 > 0 > nil
len1 > [s, add2] > cons1 > nil

Status:
from1: [1]
len1: [1]
fst2: [2,1]
add2: [2,1]
0: multiset
s: multiset
cons1: [1]
nil: multiset